Na ja, Karlsruhe (Sonnenstrahlen) und Mannheim (Schachbrett) stehen in der Gunst der Durchgeknallten ja schon lange ganz oben.
https://de.wikipedia.org/wiki/Karlsruhe#18._Jahrhundert
Ich habe in Karlsruhe studiert. Tatsächlich spielt die Pyramide zumindest in einigen Kreisen auch weiterhin eine gewisse Rolle. So wurde z.B. das alljährliche Jonglierfestival (die ersten beiden habe ich noch mit organisiert :-)) "Pyramidales Jonglierfestival" genannt.
In seiner nahezu unendlichen Unkenntnis Weisheit ist ihm wohl entgangen, dass sein Vergleich eines geworfenen Balls mit einem Pendel völliger Unfug ist.
Tatsächlich unterliegen sowohl der Ball wie das Pendel der Corioliskraft. Der wesentliche Unterschied ist dass die Flugzeit des Balls im einstelligen Sekundenbereich liegt sowie die Flugweite unter 100m und die Auswirkungen auf die Flugbahn daher nicht mit hausüblichen Mitteln messbar sind. Die Schwingungsebene des Pendels bewegt sich in einer Stunde in D um ca. 11,5° (
Foucaultsches Pendel), d.h. in den ca. 3 sec die so ein Ball fliegt um wahnsinnige 0,01°. D.h. der Vergleich zwischen dem Ball und dem Pendel ist zwar physikalisch statthaft, aber nur wenn man die Bedingungen richtig wählt, hier u.a. die Zeit während der die Corioliskraft auf das beobachtete Objekt einwirkt. So muß z.B. bei Artillerieschüssen, bei denen die Flugzeit des Projektils 60s und mehr betragen kann, die Corioliskraft durchaus berücksichtigt werden um das Ziel nicht deutlich zu verfehlen:
https://www.astronomie.de/astronomie-fuer-kinder/interessantes-fuer-lehrer-eltern/in-der-schule/die-corioliskraft/Beispiel 2) • Ein Artilleriegeschoss, welches in Deutschland (y=50°) mit 800 m/s nach Norden fliegt, erfährt eine seitliche Beschleunigung (ac=(4•pi•v•siny)/T von ca. 0,09 m/s². Dies bedeutet bei einer Flugzeit von 60 s, dass es bei einer Entfernung von 48 km das Ziel um 162 m (s=1/2•a•t²) verfehlt. Das sind etwa 0,34% der Flugstrecke)